
Ionic Bonds

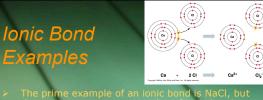
- This bond is called an ionic bond, because the electrons are <u>transferred</u> from one atom to another, creating an <u>attractio</u> between <u>opposite charges</u>.
- ords, 1 element's
- going to **give** electrons, and the other is going to **take them.** These bonds are not limited to a single pair of atoms. In NaCl, each Na+ is attracted to all of the neighboring chloride ions.
- Likewise, each Cl- is attracted to all the neighboring sodium atoms.

Ionic Bonds

- These ions form in a repeated, 3-dimensional pattern called a <u>crystal</u>
- **Lattice**. This means the positive and negative atoms are arranged in alternating patterns. This is why salt is formed in cubes.

loss and gain of electron

Na

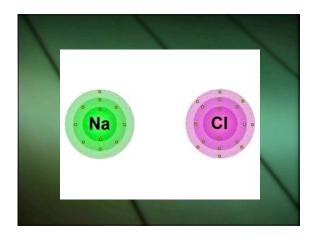

+ Sodium

ċi

atoms neutral

Chlorine

- example of an ionic bond is Nac nany more examples of ionic bo t takes 1 calcium atom to bond


- chlorine atoms. Also, notice how calcium is now Ca^{2+} . Why? Well, because calcium **lost 2** electrons, leaving it with an overall charge of 2+. Conversely, each chlorine **gained 1** electron, leaving each with an overall charge of 1-.
- This new compound would be written as CaCl₂.
- 2

lons Example #2

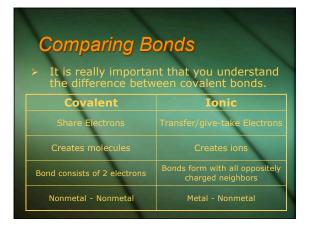
- Here's another example.
- I've got two ions: H^{1+} and $(SO_4)^{2-}$

- I've got two ions: H¹⁺ and (SO₄)²⁺
 This time, the superscript (high #) represents the charge number.
 Remember that the subscript (low #) refers to the number of atoms.
 How many hydrogens does it take to pair with the sulfate ion (SO₄)?
 2 : I need 2 positive charges to match the 2- charge.
 The final compound would be H SO
- The final compound would be H_2SO_4

You Try It!			
 See if you can write the chemical formula for each of the two ions. Remember, positive ions can only bond with negative ions, and vice versa. 			
Cation (+)	Anion (-)	Compound	
Li ¹⁺	S ²⁻		
Mg ²⁺	Cl1-		
Al ³⁺	(PO ₄) ³⁻		
each of the t > Remember, negative ion Cation (+) Li ¹⁺ Mg ²⁺	two ions. positive ions can o s, and vice versa. Anion (-) S ²⁻ Cl ¹⁻	only bond with	

You Try It!			
Cation (+)	Anion (-)	Compound	
Li ¹⁺	S ²⁻	Li ₂ S	
Mg ²⁺	Cl1-		
Al ³⁺	(PO ₄) ³⁻		

You Try It!			
Cation (+)	Anion (-)	Compound	
Li1+	S ²⁻	Li ₂ S	
Mg ²⁺	Cl1-	MgCl ₂	
Al ³⁺	(PO ₄) ³⁻	AI(PO ₄)	


Quick Information

- More details to come...

- 3 types of bonds:
 1. Ionic: taking/giving of electrons
 2. Covalent: went to Kindergarten and learned to share!!
 (Sharing of electrons- more info on this next time)
- > 3. Metallic Bonds

Metallic bond Quickly... a metallic bond is the force of attraction between a positively charged **metal ion** and the **electrons** in a metal. Metals atoms are so tightly packed, their electron shells overlap. This lets electrons move freely from one atom to another. THIS lets metal conduct electricity %

- THIS lets metal conduct electricity & change shape easily (ductility, malleability).
- Cool animation: click her

